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Abstract

Foam flotation methods have been used for years for ore concentration and
show considerable promise for the removal of a variety of pollutants from
wastewaters. However, scant attention has been given to the critical interaction
in these processes of surface chemistry and fluid mechanics. A numerical model
of an air bubble with an attached floc particle rising in a Stokes flow regime
through a liquid pool at the bottom of a batch foam flotation column was
developed. This model computed the viscous forces acting to separate the
bubble and particle, and these forces were compared with those given by
previous investigators. This research demonstrates that, while previous methods
have correctly estimated the magnitudes of the viscous forces, they have failed
to correctly estimate the directions. Based on the results of this work, a much
simpler model for describing the interaction of fluid mechanics and surface
chemistry in particle attachment to bubbles in foam flotation columns is
suggested.

INTRODUCTION

Although foam flotation methods have been used for years for ore
concentration and show considerable promise for the removal of a variety
of pollutants from wastewasters (5), scant attention has been shown to
the critical interaction in these processes of surface chemistry and fluid
mechanics. While the forces binding a floc particle to the surface of an air
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bubble may be accurately estimated, the viscous forces tending to separate
the particle and the bubble cannot, at present, be accurately estimated
under all flow conditions.

The purpose of this research was to develop a mathematical model which
could accurately estimate the viscous forces on a floc particle attached to
an air bubble rising through a liquid pool at the bottom of a batch foam
flotation column. The rise velocity of the bubble was assumed to be such
that the Reynolds number was less than 1, and hence the bubble was in
a creeping flow regime. The viscous forces acting to separate the bubble
and particle computed in this research were compared with those pre-
viously estimated by Currin et al. (2), and it was demonstrated that
although this method adequately estimated the magnitudes of these forces,
it failed to correctly estimate the directions. The primary significance of
this research is that it suggests new avenues of research and a much
simpler model for describing the interaction of fluid mechanics and
surface chemistry in particle attachment to bubbles in foam flotation
columns.

ANALYSIS

The analysis of the fluid motion past an air bubble with an attached
floc particle, Fig. 1, must begin with the Navier-Stokes equations of flow
for a viscous, steady, incompressible fluid and the corresponding equation
of continuity. At present, there appear to be no exact solutions to these
equations for flow past bodies of finite size; consequently, it is necessary
to derive approximate solutions. These approximate solutions may be

Floe Particle

Air Bubble

Fi1G. 1. Schematic definition of air bubble—floc particle system.
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either numerical solutions of the exact Navier-Stokes equations or solu-
tions, either numerical or analytical, of approximate equations. In either
case, the dominant parameter involved is the Reynolds number, Re,
and a value of this parameter must be specified. In the extreme case
considered here, Re < 1, the Navier-Stokes equations reduce to the
Stokes equations:

grad p = uV?v ®
and
divv=0 @

(The symbols are defined at the end of the text.) Equations (1) and (2) are
subject to the same boundary conditions as the complete Navier-Stokes
equations, namely the no-slip boundary condition and no penetration of
solid boundaries by fluid, i.e.,

v,=0 ?3)
and
v, =0 @

In the case of low Reynolds number flow past a sphere, it is convenient
to introduce spherical polar coordinates r, 8, and A with the axis § = 0°
aligned in the direction of the free stream velocity U. Equation (2), the
equation of continuity, is satisfied if the radial and theta velocity com-
ponents, v, and vy, respectively, are defined in terms of the Stokes stream
function y, i.e.,

1 oy
U= Tsin 000 ®)
and
1 oy
Y%= T sinb or ©)

In the absence of swirl, v; = 0, substitution of Eqs. (4) and (5) in Eq. (1)

yields
o sinf 9 1 0\?2
(5_2_ ToT % <sin 0) ﬁ)) =0 M

which is the equation of Stokes (4).

In Fig. 1 the air bubble-floc particle system is shown schematically;
in contrast with the actual application of this research, the bubble-particle
system is assumed stationary in a free stream velocity field of magnitude U.
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With regard to this situation, several simplifying assumptions must be
made. First, the analysis of the system described here begins at some time
after the bubble and particle come into contact. The bubble and particle
are assumed to be pinned together at the point of contact, and the mag-
nitude of this binding force can be estimated by the methods of Wilson
(10). The floc particle is thus subject to three forces; the binding force
Fy, a drag force Fp, and a lift force F,. These forces are defined in Fig. 1.
Second, it is assumed that the mass and volume of the particle are negli-
gible, and that the drag contributed by the particle to the bubble—particle
system is negligible. Third, the air bubble and floc particle are idealized as
perfect, solid spheres with radii », and r,, respectively. Batchelor (1) has
noted that gas bubbles may be expected to remain spherical if

pg’riv?e « 81 ®)

Forth the internal motion of the gas in the bubble is assumed to have no
effect on the liquid motion. Fifth, the external pressure field is assumed to
be constant. Sixth, the flow about the bubble—particle system is assumed
to be axisymmetric, i.e., v; = 0. Although the flow is not truly axisy-
mmetric, the magnitude of r, relative to 7, is such that this is a reasonable
simplification. Seventh, it is assumed that the bubble-particle system is in
an infinite flow field, i.e., there are no walls to influence the flow.

Given these assumptions, it is convenient to establish a bipolar co-
ordinate system and specify the boundary conditions and solution in terms
of the polar coordinate system with its origin at the center of the floc
particle, Fig. 1. It is also convenient to define a dimensionless stream
function

¥ = y/Ur? )

A uniform velocity or stream function field exists very far from the
bubble—particle system. Far from the bubble-particle system, the flow
appears as if only the air bubble were present. For both of these areas,
the stream function is given by

3 (—’lz> (10)

r o LA YY) —_— - a
Y’ = 0.5sin (0)(2'} P X

which is the Stokes solution (9). By definition, the streamline which
coincides with the air bubble—floc particle boundary is ' = 0. This defi-
nition implicitly satisfies the boundary condition given by Eq. (4).
The boundary condition given by Eq. (3) requires that at the air bubble-
floc particle boundaries

ay'lon = 0 (11)
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where n = coordinate direction normal to the boundary. Equation (10)
defines ' for

r = 0.75r, (12)

where r, is a line constructed through the center of the floc particle tangent
to the surface of the air bubble, Fig. 1. For r less than 0.75r,, ' must be
computed from Eq. (7) where ' is substituted for . It is noted that,
once r, and r; are defined, r, remains constant for all ¢, since a sphere
has constant curvature. Given Fig. 1, basic geometry and trigonometry
are sufficient to locate all boundaries.

Given the foregoing boundary conditions, Eq. (7) can be solved numeri-
cally, and after converting the resulting i’ values to values of ¥, v, and v,
can be found from Egs. (5) and (6). It is noted that for 6 = 180 or 0°,
v, and v, are not defined. The distribution of pressure throughout the fluid
is determined by integrating Eq. (1), and the corresponding shear stress
distribution is given by

1 00,. 609
TrO’ﬂ(;%"' 6r> (13)

where 1,5 = shear stress acting in the 6 direction on a plane whose normal
is the r direction. The drag on the floc particle is then found by integrating
the pressure and shear over the surface of the floc particle, i.c.,

Fp = —j Tyopr=r, Sin 0 d4 — j Dyr=r, €08 0 dA (149
0 0

where Fj, = drag force on the floc particle and d4 = 2nr? sin 6 d6. The
lift is found in an analogous fashion:

F, = —j Toojr=r, COS 0 d4 — j Plr=r, Sin 0 d4 (15)
0 0

where F, = life force on the floc particle and d4 = 2nr,? cos 6 df. The
lift arises because the flow is not axisymmetric, and the lift is the only force
considered in this analysis which would tend to separate the bubble and
particle.

NUMERICAL CALCULATIONS

Given that Eq. (10) defines ' for all r greater than or equal to 0.75r,,
Eq. (7) must then be solved for the remaining domain of (r, §) subject to
the noted boundary conditions. This remaining (r,#) domain was
covered with a circular grid having a distance Ar between the nodes in
the r direction and A6 in the theta direction. A rather standard finite
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/Boundary

Fi1G. 2. Computational star for a typical interior mesh node.

difference scheme was then applied; e.g., Street (8). The computational star
for the typical interior node is shown in Fig. 2, and the coefficients for this
star are defined in the section entitled ‘‘Numerical Coefficients.” From
Fig. 2 it is noted that the numerical scheme is implicit, and therefore
the numerical solution required that Eq. (7) be written at each node. The
result was M simultaneous equations. In the case considered here, M
was equal to 316 and a standard elimination scheme was used to solve the
equations.

Vanderbilt University’s DEC 1099 computer system was used for all
computations. The size of the program developed required that the cal-
culations be accomplished in three steps. An initial program, FL, solved
Eq. (7) on the basis of a coarse radial grid, Table 1. FL generated a data
file which was used as input to a second program, FLLOAD, which solved
Eq. (7) on the basis of a much finer radial grid. The angular grid for FL
and FLLOAD was constant. FLLOAD generated a data file which was

TABLE 1

Summary of Numerical Parameters

Parameter FL FLLOAD
re 4.6 x 10-¢ 4.6 x 10-°
Ar 34 x 1077 1.0 x 10-7

A8 0.087 0.087
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used as input to a third program, FLOCVE, which computed v, v,, vy,
D, .9, Fp, and Fy.

Several comments regarding the numerical computations should be
noted. First, although the problem was solved in terms of a nondimen-
sional stream function, the angles and distances involved were small and
double precision arithmetic was required in all computations. This
requirement substantially increased the amount of on-line storage required
and was a primary factor in causing the computations to be done in three
stages. Second, floating point numbers on the DEC 1099 system must be
smaller than 108 and larger than 10~ 3%, This condition was also the source
of some difficulty. Third, the size and cost of the programs involved
required that the research be limited to a specific case. The parameters for
the case considered are summarized in Table 2. Fourth, in Table 1 it is
noted that the smallest radial grid size used was 1 x 10~7 m, which was
also the radius of the floc particle. Although it would have been desirable
to use a smaller radial increment, numerical testing demonstrated that
smaller grid spacings had an insignificant effect on the final answer and
significantly increased the amount of computer time required. It is noted
that r, is 600 times larger than r,.

RESULTS

The results of this research are summarized in Figs. 3, 4, and 5. Figure 3
is a small-scale plot of the dimensionless streamlines past the bubble-
particle system in the vicinity of ' = 140° for two situations: (a) an air
bubble with no attached floc particle and (b) an air bubble with a floc
particle attached at §’ = 140°. Figure 4 is a large-scale plot of the same
region. In these figures it is noted that the region considered is so small
that the surface of the air bubble and the streamlines past the air bubble

TABLE 2
Basic Parameter Summary

Parameter Value Units
U 7.79 x 1073 meters per second
e 6 x 10-5 meters
ry 1 x 10-7 meters
u 1.005 x 10-3 kilograms per meter second
p 998.2 kilograms per cubic meter
2r,Uplu 0.9
v 1.007 x 10-9 square meters per second
o 7.36 x 10~2 newtons per meter

pgr.Sivio 1 x 103
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— — — Streamlines Past Air Bubble Alone

——— Streamlines Past Bubble-Particle System
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FiG. 3. Dimensionless streamlines past the bubble—particle system for particle
attachment at 8’ = 140°.
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Fi1G. 4. Dimensionless streamlines past the bubble-particle system for particle
attachment at 8" = 140°.
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F1G. 5. F. and Fp as functions of 6§’ (4.448N = 1 1b).

with no attached floc particle appear as straight lines. The effect of the
floc particle is to displace the streamlines outward and distort them, and
as the dimensionless distance r/r; increases, the distortion decreases. In
front of the particle there are several closed streamlines which are indica-
tive of the blocking effect of the particle. Behind the particle there is
apparently a large region of stagnation. A much finer radial and angular
grid would be required to define the streamline patterns in these regions
accurately.

In Fig. 5 the drag and lift on the floc particle due to shear and pressure
are plotted as functions of §’. The maximum values of Fj, occur at 8’ =
90 and 270° while the minima occur at ' = 0 and 180°. Although finite
values of F}, are estimated for attachment at 8 = 0 and 180°, the true value
of Fy at these points must be zero since at these points the pressure and
shear must be axisymmetric. Fj, is a harmonic function of 6'.

With regard to magnitude, the maximum lifts occur at ' = 90 and 270°,
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and the minima at 8 = 0 and 180°, F, is also a harmonic function of &'.
The surprising conclusion regarding F is that the lift is negative in direc-
tion; a conclusion which under the assumptions of this research indicates
that F; combines with Fy to bind the floc particle to the air bubble.

The fact that the numerical calculations predict a negative lift is surpris-
ing because classical hydrodynamics, e.g., Milne-Thomson (6), predicts
that as a sphere approaches a plane, which is approximately the situation
here, the sphere is repelled from the plane. However, the theoretical and
experimental work of Harris (3) regarding the approach of a cylindrical
body in a viscous shearing flow to a plane at a low Reynolds number
demonstrates that the plane attracts the cylinder. Harris (3) showed
theoretically that this negative lift effect was the result of viscosity in
combination with a shearing flow. Thus the case considered here is the
extension of Harris’ work to a sphere attached to a plane, and the numeri-
cal results are consistent with his conclusions.

COMPARISON WITH PREVIOUS WORK

In a previous paper, Currin et al. (2) estimated the force tending to
separate the floc particie from the rising air bubble by the judicious use
of simplifying assumptions. In this work the buoyant force on the rising
air bubble was

4
Fj = 3nr.pg (16)

Stokes’ law gave the viscous drag on the bubble as
Fy = 6rnur, U a7

Combining Egs. (16) and (17) then yielded an expression for the terminal
velocity of rise:

U = 2pgr,’[9u 18)
The boundary layer thickness of the bubble was estimated as
d = nr,/3 (19)

The drag force on the floc particle was then found by applying Stokes’
law to the floc particle where the relative velocity of the fluid in the bound-
ary layer was assumed to be r,U/é. The drag force on the floc particle was
estimated as

)
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or
Fp = (6.16 x 10%)r,r,? 1
Substitution of the parameters in Table 2 in Eqgs. (18), (19), and (21) yields
U =179 x 1073 m/sec 22)
§=2628x10"°m 23)
and
Fp=13.69 x 107**N 24)

At this juncture, several comments may be made. First, implicit in the
analysis of Currin et al. (2) was the assumption that the forces tending to
separate the bubble and particle were proportional to the drag force
calculated by Eq. (20). The research presented here indicates that, while
Eq. (20) provided reasonable estimates of the magnitude of F;, it com-
pletely failed to predict the direction and hence the effect of F;. Second,
from Fig. 5 it is clear that F; and F; are not constants but functions of
¢’. Third, Wilson (0) estimated that Fy was of order 10~1° N; hence
the binding force is much larger than any of the viscous forces for this
flow regime.

APPLICATIONS AND CONCLUSIONS

This research has clearly demonstrated that the interaction of bubbles
and floc particles is a very complex problem. In this work, only the very
simple case of a single air bubble with a single floc particle pinned to it
was considered. This case is, in general, dynamically unstable; the viscous
drag on the particle, although very small, would cause the bubble-particle
system to rotate. In addition, the assumption that the particle is pinned
to the bubble is an extreme idealization. In fact, the nature of the binding
force would be such that the particle must be considered free to move about
on the bubble surface in response to the forces applied. If this is the case,
then the effect of Fy, Fj, and F is to roll the floc particle toward 68’ = 0°,
Although the detailed analysis of this movement would be interesting,
it would obscure the fact that as the air bubble moves up through the
column, it randomly encounters many particles, and it is the latter problem
which must be solved.

On the basis of the research presented here, it is asserted that the design
of an optimum air bubble for foam flotation, i.e., a bubble which is
large enough to encounter and collect many particles but small enough
so that the particles are not stripped from the bubble, is composed of two
problem areas which can be considered separately. The first problem area
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concerns the time previous to initial bubble—particle contact. In this area
the particle can initially be viewed as a point mass traveling on a streamline
subject to Fp, a centrifugal force due to streamline curvature, and the net
resultant of the buoyant and gravitational forces. As the particle moves
closer to the bubble, a fourth force becomes important: the viscous force
termed F, in this research. For small Reynolds numbers, F; is negative
and the bubble attracts the particle. At high Reynolds numbers, F;, may
be positive and the bubble would repel the particle. The work of Harris
(3) is not sufficient to establish the limiting value of Re.

The second problem area occurs after contact between the bubble and
the particle is established. Fg, Fp, and F; act to roll the particle back
on the bubble toward 6’ = 0°, and after a series of random bubble—particle
collisions an axisymmetric cap of floc particles would be formed on the
bubble in the vicinity of 8’ = 0°, Fig. 6. Thus the second problem area
concerns the fluid motion past the bubble with a particle cap. This flow
can be computed from Eqgs. (1) and (2) for Re < 1 or from the Prandtl
boundary layer equations (7) for Re > 1. The cap fails when the pressure,
shear, and gravitational forces on the cap combine to “pop” a particle
out of the cap and off the bubble.

Air Bubble

Floc Particle Cap

Fic. 6. Schematic of air bubble with a cap of floc particles at § = 0°.
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It must be noted that the numerical results of this research should be
treated as order of magnitude estimates of the viscous forces involved
rather than as exact answers. The assumptions required to obtain these
results were extreme idealizations of the true situation. However, these
estimates have led to the formulation of two new models which are much
more tractable and lend themselves, in the numerical sense, to exact solu-
tion. It is hoped that this research will be of general use in guiding other
investigators in exploring the field of foam flotation.

SYMBOLS

Fy lift force
F,  drag force
F) drag on air bubble
Fy binding force
Fy buoyant force
g gravitational acceleration
P pressure
r,  radius of air bubble
r;  radius of floc particle
r,0 polar coordinate system centered at the center of the floc particle
r',o polar coordinate system centered at center of the air bubble
U  free stream velocity
velocity normal to boundary
v,  velocity tangent to boundary
radial velocity
vy  theta velocity
v velocity vector
] boundary layer thickness
4 absolute viscosity
v kinematic viscosity
P fluid density; shear stress acting in the 6 direction on a plane
whose normal is the y direction
c liquid surface tension parameter
/] Stokes stream function
/4 dimensionless stream function

NUMERICAL COEFFICIENTS

Ar  AG% 1
a0=4sin30<'7;—————2>
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) 0 3At92 + 4 3Ar? _ 6Ar?
= 2sin® ArZ z FPAD s

2Ar

(cos? 0 sin 0 + 2 sin 6)
_ A¢*sin’ 6
%2 = TAZ

AG? Ar 1
Az ™ r?

3 = —4sin? 0( =+

AB% sin® 0
Oy = Ar2

<2A0 sinf@ Ar?cosOsinf 2Ar?sin® 0)
= cos 0 + +
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3Ar2 A0sin® 0 3Ar*AQ
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5 sin® 0 3Ar 2 2Ar? 2Ar? sin 8
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_ ArZsin®@ Ar?cos 0sin? @
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— cos B 3A6Ar?sin? 6 3A6Ar*  2A0 sin? 0
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r4 Adr#
+2 0 Ar 2 2Ar? +2Ar2 sin 0
sin® Tt T T rAAe? rt
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., [ArA8 A@
oc“=—cosf)s1n"0< :3 +,.T>+2Sin39<%r+riz>

., [ArA8  AB
%, = cos 0 sin2 9( :3 + rT) + 2 sin’ o(f—: + l2>
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